Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(7): 12004-12011, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571035

RESUMEN

We demonstrate ultraviolet-to-mid-infrared supercontinuum generation (SCG) inside thin-film lithium niobate (TFLN) on sapphire nanowaveguides. This platform combines wavelength-scale confinement and quasi-phasematched nonlinear interactions with a broad transparency window extending from 350 to 4500 nm. Our approach relies on group-velocity-matched second-harmonic generation, which uses an interplay between saturation and a small phase-mismatch to generate a spectrally broadened fundamental and second harmonic using only a few picojoules of in-coupled fundamental pulse energies. As the on-chip pulse energy is increased to tens of picojoules, these nanowaveguides generate harmonics up to the fifth order by a cascade of sum-frequency mixing processes. For in-coupled pulse energies in excess of 25 picojoules, these harmonics merge together to form a supercontinuum spanning 360-2660 nm. We use the overlap between the first two harmonic spectra to detect f-2f beatnotes of the driving laser directly at the waveguide output, which verifies the coherence of the generated harmonics. These results establish TFLN-on-sapphire as a viable platform for generating ultra-broadband coherent light spanning from the ultraviolet to mid-infrared spectral regions.

2.
Sci Adv ; 10(11): eadl1814, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478618

RESUMEN

Quantum optical technologies promise advances in sensing, computing, and communication. A key resource is squeezed light, where quantum noise is redistributed between optical quadratures. We introduce a monolithic, chip-scale platform that exploits the χ(2) nonlinearity of a thin-film lithium niobate (TFLN) resonator device to efficiently generate squeezed states of light. Our system integrates all essential components-except for the laser and two detectors-on a single chip with an area of one square centimeter, reducing the size, operational complexity, and power consumption associated with conventional setups. Using the balanced homodyne measurement subsystem that we implemented on the same chip, we measure a squeezing of 0.55 decibels and an anti-squeezing of 1.55 decibels. We use 20 milliwatts of input power to generate the parametric oscillator pump field by using second harmonic generation on the same chip. Our work represents a step toward compact and efficient quantum optical systems posed to leverage the rapid advances in integrated nonlinear and quantum photonics.

3.
Nature ; 627(8002): 95-100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448697

RESUMEN

Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy1-7. A substantial effort has developed around 'microcombs': integrating comb-generating technologies into compact photonic platforms5,7-9. Current approaches for generating these microcombs involve either the electro-optic10 or Kerr mechanisms11. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb-an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser12. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.

4.
Nat Commun ; 14(1): 3355, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291141

RESUMEN

The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.


Asunto(s)
Óxidos , Fotones , Registros , Relación Señal-Ruido
5.
Proc Natl Acad Sci U S A ; 119(49): e2212497119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454753

RESUMEN

Nanoconfined few-molecule water clusters are invaluable systems to study fundamental aspects of hydrogen bonding. Unfortunately, most experiments on water clusters must be performed at cryogenic temperatures. Probing water clusters in noncryogenic systems is however crucial to understand the behavior of confined water in atmospheric or biological settings, but such systems usually require either complex synthesis and/or introduce many confounding external bonds to the clusters. Here, we show that combining Raman spectroscopy with the molecular nanocapsule cucurbituril is a powerful technique to sequester and analyze water clusters in ambient conditions. We observe sharp peaks in vibrational spectra arising from a single rigid confined water dimer. The high resolution and rich information in these vibrational spectra allow us to track specific isotopic exchanges inside the water dimer, verified with density-functional theory and kinetic population modeling. We showcase the versatility of such molecular nanocapsules by tracking water cluster vibrations through systematic changes in confinement size, in temperatures up to 120° C, and in their chemical environment.


Asunto(s)
Nanocápsulas , Vibración , Agua , Polímeros , Espectrometría Raman
6.
Opt Express ; 30(18): 32752-32760, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242330

RESUMEN

Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.

7.
Opt Lett ; 47(11): 2706-2709, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648910

RESUMEN

The strength of interactions between photons in a χ(2) nonlinear optical waveguide increases at shorter wavelengths. These larger interactions enable coherent spectral translation and light generation at a lower power, over a broader bandwidth, and in a smaller device: all of which open the door to new technologies spanning fields from classical to quantum optics. Stronger interactions may also grant access to new regimes of quantum optics to be explored at the few-photon level. One promising platform that could enable these advances is thin-film lithium niobate (TFLN), due to its broad optical transparency window and possibility for quasi-phase matching and dispersion engineering. In this Letter, we demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of η0 = 33, 000%/W-cm2, significantly exceeding previous demonstrations.

8.
Pediatr Res ; 79(3): 387-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26571225

RESUMEN

BACKGROUND: Phototherapy using light in the spectral range of 410-500 nm, which overlaps the absorption of bilirubin, is the common treatment for neonatal hyperbilirubinemia. Hemoglobin (Hb) absorbs light strongly throughout this same range and thus can compete with bilirubin for this light and consequently reduce the efficacy of phototherapy. Here, we determined the effect of hematocrit (Hct) on in vitro bilirubin photoalteration using narrow-band blue (450 nm) light-emitting diodes (LEDs). METHODS: Suspensions with Hcts from 0 to 80% and 16 ± 1 mg/dl bilirubin were prepared by mixing red blood cells (RBCs), bilirubin (30 mg/dl) in 4% human serum albumin, and normal saline. Aliquots of each suspension were exposed to blue light at equal irradiances. Before and after 60 min of exposure, bilirubin levels in supernatants (n = 46) were measured using a diazo-dye method. RESULTS: Bilirubin photoalteration steeply decreased by ~60% as Hct increased from 0 to 10%. Over the clinically relevant range of 30-70% Hct, the decrease was significant, but less drastic, exhibiting a quasi-linear dependence on Hct. CONCLUSION: Bilirubin photoalteration under blue light in vitro is significantly reduced as Hct increases. Clinical studies are warranted to confirm these in vitro observations that Hct can affect the efficacy of phototherapy.


Asunto(s)
Bilirrubina/sangre , Hematócrito , Hiperbilirrubinemia Neonatal/sangre , Hiperbilirrubinemia Neonatal/terapia , Luz , Fototerapia/métodos , Adulto , Bilirrubina/química , Recuento de Eritrocitos , Eritrocitos/citología , Humanos , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...